Name: \qquad Section: \qquad

1.1 - Solving Systems of Linear Equations

Define: a linear equation in variables $x_{1}, x_{2}, \ldots, x_{n}$ and numbers $a_{1}, a_{2}, \ldots, a_{n}$ and b is an equation

$$
a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\cdots+a_{n} \cdot x_{n}=b
$$

e.g.

Define: a system of linear equations is a collection of linear equations e.g.

Define: $\left(s_{1}, \ldots, s_{n}\right)$ is a solution for a system of equations
if plugging in s_{1}, \ldots, s_{n} for x_{1}, \ldots, x_{n} makes $A L L$ the equations in the system true.
e.g.

Define: The solution set of a system is the SET of ALL solutions.

If $n=2$, then solutions are points in the plane and solution sets are graphs in 2D

If $n=3$, then solutions are points in 3D and solution sets are graphs in 3D

NOTE: "Solve" means "find the solution set".

Name: \qquad Section: \qquad

Row Operations

1. Scaling Multiply row by nonzero number
E.g. Set $r_{2}^{*}=\frac{1}{2} r_{2}$

Intended use: Turn the first nonzero entry in r_{2} into a 1.
2. Replacement Add multiple of one row to another row
E.g. Set $r_{2}^{*}=r_{2}+4 \cdot r_{1}$

Intended use: Use the first nonzero entry in r_{1} to zero out an entry in r_{2}.
Note: the only row that changes is r_{2} (the row being replaced).
3. Interchange: Switch two rows.
E.g. Set $r_{2}^{*}=r_{3}$ and $r_{3}^{*}=r_{2}$.

Intended use: Rearrange the row's so that the matrix is more beautiful.

The above row operations DO NOT add or remove solutions from the original system because they correspond to procedures which generate equivalent equations

1. Scaling: Multiply (or divide) both sides of the equation by the same nonzero real number.
2. Replacement: Add (or subtract) the same real number to (from) both sides of the equation.
3. Interchange: Write the same equations down in a different order.

Name: \qquad Section: \qquad

1.2 - Echelon Form, Reduced Echelon Form, and Pivots

Define: A matrix is in echelon form (aka row echelon form) if its nonzero leading entries move down and to the right, never skipping a row

Define: An echelon form matrix is in reduced echelon form if it also satisfies

1. all leading nonzero row entries are 1
2. there are zero's above each leading non-zero entry

Note: Matrices have many equivalent echelon forms, BUT
Theorem 1: Each matrix is equivalent to a unique reduced echelon matrix.

Useful Notation: pivot positions
Note: Reducing an echelon form matrix does not change the position of its leading nonzero terms.

Define: Fix a matrix A.

- a pivot position in A is a location in A that correspons to a leading 1 in the reduced echelon form of A , and
- a pivot column is a column of A that contains a pivot position.

Name: \qquad Section: \qquad

The Row-Reduction Algorithm

A recipe that will row-reduce any matrix. The algorithm has two "phases."

Forward Phase: Reduce to echelon form FAST

Note: This phase moves from LEFT TO RIGHT

1. (a) Start with the leftmost non-zero column. This is a pivot column.
(b) Ensure the top position is a pivot by interchanging rows (if necessary).
2. Use Replacement to create zero's in all positions below the pivot.
3. Repeat steps 1-3 for the circled submatrix. Keep going until the matrix is in echelon form.

Backward Phase: Clearing out the pivot columns.

Note: This phase moves from RIGHT TO LEFT

1. Starting with rightmost pivot, and working up and to the left, create zeros above each pivot. If the pivot is not 1 , rescale the row to make it 1 .

Name: \qquad Section: \qquad

1.3 - Vectors, Linear Combinations, and Vector Equations

Define: a vector $\overrightarrow{\mathbf{v}}$ in \mathbb{R}^{m} is an $m \times 1$ matrix

$$
\overrightarrow{\mathbf{v}}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right]
$$

where $v_{1}, v_{2}, \ldots, v_{m}$ are scalar numbers in \mathbb{R}.

We can add and scale vectors as follows.
If $c \in \mathbb{R}$ and $\overrightarrow{\mathbf{v}} \in \mathbb{R}^{m}$, then you scale each component

$$
c \cdot \overrightarrow{\mathbf{v}}=\left[\begin{array}{c}
c \cdot v_{1} \\
c \cdot v_{2} \\
\vdots \\
c \cdot v_{m}
\end{array}\right]
$$

A vector in \mathbb{R}^{3} is a vector in 3 D space.
E.g. Graph the vector $\stackrel{\rightharpoonup}{\mathbf{v}}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$

If $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in \mathbb{R}^{m}$, then you add component-wise

$$
\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right]+\left[\begin{array}{c}
2_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right]=\left[\begin{array}{c}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
\vdots \\
v_{m}+w_{m}
\end{array}\right]
$$

We write $\overrightarrow{\mathbf{0}}$ for the all-zero vector. That is, $\overrightarrow{\mathbf{0}}=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]$

Algebraic Properties of \mathbb{R}^{m}

For all $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$ and scalars c and d,

- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}}$
- $\overrightarrow{\mathbf{u}}+(-\overrightarrow{\mathbf{u}})=\overrightarrow{\mathbf{0}}$
- $(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})+\overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}}+(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})$
- $c \cdot(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})=c \cdot \overrightarrow{\mathbf{u}}+c \cdot \overrightarrow{\mathbf{v}}$
- $c(d \overrightarrow{\mathbf{u}})=(c d) \overrightarrow{\mathbf{u}}$
- $\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}$
- $(c+d) \cdot \overrightarrow{\mathbf{u}}=c \cdot \overrightarrow{\mathbf{u}}+d \cdot \overrightarrow{\mathbf{u}}$
- $1 \cdot \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{u}}$

Proof of commutativity: $\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]+\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}v_{1}+w_{1} \\ v_{2}+w_{2}\end{array}\right]=\left[\begin{array}{l}w_{1}+v_{1} \\ w_{2}+v_{2}\end{array}\right]=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\overrightarrow{\mathbf{w}}+\overrightarrow{\mathbf{v}}$
NOTICE: We don't define vector multiplication. We want to study linear combinations of vectors.

Define: Give vectors $\stackrel{\rightharpoonup}{\mathbf{a}}_{1}, \stackrel{\rightharpoonup}{\mathbf{a}}_{2}, \ldots, \stackrel{\rightharpoonup}{\mathbf{a}}_{n}, \stackrel{\rightharpoonup}{\mathbf{b}}$ in \mathbb{R}^{m} (with m components each) and numbers $c_{1}, c_{2}, \ldots, c_{n}$ in \mathbb{R}

If $\quad \overrightarrow{\mathbf{b}}=c_{1} \cdot \stackrel{\rightharpoonup}{\mathbf{a}}_{1}+c_{2} \cdot \stackrel{\rightharpoonup}{\mathbf{a}}_{2}+\cdots+c_{n} \cdot \stackrel{\rightharpoonup}{\mathbf{a}}_{n}$
Then $\overrightarrow{\mathbf{b}}$ is a linear combination of $\overrightarrow{\mathbf{a}}_{1}, \ldots, \overrightarrow{\mathbf{a}}_{n}$

Name: \qquad Section: \qquad

The Span of a Set of Vectors

Define: The subset of \mathbb{R}^{m} spanned by the vectors $\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots, \overrightarrow{\mathbf{a}}_{n}$ in \mathbb{R}^{m}
is the set of all linear combinations of $\overrightarrow{\mathbf{a}}_{1}, \overrightarrow{\mathbf{a}}_{2}, \ldots, \overrightarrow{\mathbf{a}}_{n}$.
Formally:
$\operatorname{Span}\left\{\stackrel{\rightharpoonup}{\mathbf{a}}_{1}, \ldots, \overrightarrow{\mathbf{a}}_{n}\right\}=\left\{\overrightarrow{\mathbf{b}} \in \mathbb{R}^{m}: \overrightarrow{\mathbf{b}}=c_{1} \cdot \overrightarrow{\mathbf{a}}_{1}+\cdots+c_{n} \cdot \overrightarrow{\mathbf{a}}_{m}\right.$ for some scalar numbers $\left.c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}$

Intuitively:

Span $\left\{\stackrel{\rightharpoonup}{\mathbf{a}}_{1}, \ldots, \overrightarrow{\mathbf{a}}_{n}\right\}$ is the set of vectors $\stackrel{\rightharpoonup}{\mathbf{b}}$ that can be "gotten" from linear combinations of $\overrightarrow{\mathbf{a}}_{1}, \ldots, \overrightarrow{\mathbf{a}}_{n}$.

Geometric Description of Span

If $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \neq \overrightarrow{\mathbf{0}}$, then

1. $\operatorname{Span}\{\overrightarrow{\mathbf{v}}\}$ is a line through $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{0}}$.
E.g. Let $\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$. Graph $\operatorname{Span}\{\overrightarrow{\mathbf{v}}\}$.

2. $\operatorname{Span}\left\{\frac{1}{3} \overrightarrow{\mathbf{v}}, \frac{3}{4} \overrightarrow{\mathbf{v}}\right\}$ is the same line through $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{0}}$.
3. If $\overrightarrow{\mathbf{w}}$ is not a multiple of $\overrightarrow{\mathbf{v}}$ then $\operatorname{Span}\{\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}\}$ is a plane through the points $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}, \overrightarrow{\mathbf{0}}$.
E.g. Suppose $\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$ and $\overrightarrow{\mathbf{w}}=\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$

Graph $\operatorname{Span}\{\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}\}$.

NOTICE: Every plane through $\overrightarrow{\mathbf{0}}$ is the span of two non-zero vectors $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$

Saved for future classes: i. planes not going through $\overrightarrow{\mathbf{0}}$ (§1.5), and $i i$. the span of >2 vectors (§1.7)

Name: \qquad Section: \qquad

Summary: Choose the Notation Best for your Purposes

	Systems of Equations	Augmented Matrices	Vector Equations	Matrix Equations
Algebraic meaning	$\sqrt{ }$		$\sqrt{ }$	$?(!)$
Geometric meaning	$\sqrt{ }$		$\sqrt{ }$	$?(!)$
Concise to Write		$\sqrt{ }++$	$\sqrt{ }$	$\sqrt{ }+$
Easy to Work with	$\sqrt{ }$	$\sqrt{ }++$		$\sqrt{ }$
Explicitly States Variables			$\sqrt{ }$	$\sqrt{ }$

For now, vector equations seem like the clear winner for "clarity of meaning" and augmented matrices are the clear winner for "ease of use".

As we learn more about Matrices (§1.9 and onward) they will pull ahead in "clarity of meaning".

Four ways of saying the same thing

System of Equations

$$
\begin{aligned}
& 2 x+3 y-2 z=6 \\
& 5 x+2 y+z=10
\end{aligned}
$$

Augmented Matrix

$$
\left[\begin{array}{ccc|c}
2 & 3 & -2 & 6 \\
5 & 2 & 1 & 10
\end{array}\right]
$$

Vector Equation

$$
x \cdot\left[\begin{array}{l}
2 \\
5
\end{array}\right]+y \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]+z \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
10
\end{array}\right]
$$

Matrix Equation

$$
\left[\begin{array}{ccc}
2 & 3 & -2 \\
5 & 2 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
6 \\
10
\end{array}\right]
$$

Theorem 3: If an $m \times n$ matrix A has columns $\overrightarrow{\mathbf{a}}_{1}, \ldots, \overrightarrow{\mathbf{a}}_{n}$, then the following have the same solution set:

1. $\mathrm{A} \stackrel{\rightharpoonup}{\mathrm{x}}=\overrightarrow{\mathrm{b}}$
2. $x_{1} \cdot \overrightarrow{\mathbf{a}}_{1}+x_{2} \cdot \stackrel{\rightharpoonup}{\mathbf{a}}_{2}+\cdots+x_{n} \cdot \overrightarrow{\mathbf{a}}_{n}=\overrightarrow{\mathbf{b}}$
3. the linear system with augmented matrix $\left[\overrightarrow{\mathbf{a}}_{1} \stackrel{\rightharpoonup}{\mathbf{a}}_{2} \ldots \overrightarrow{\mathbf{a}}_{n} \mid \stackrel{\rightharpoonup}{\mathbf{b}}\right]$

Name: \qquad Section: \qquad
$A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has a solution
$\Longleftrightarrow[A \mid \overrightarrow{\mathbf{b}}]$ is consistent
\Longleftrightarrow reduced echelon form AVOIDS $[0 \ldots 0 \mid \square]$.

Eg:
$\left[\begin{array}{ccc|c}0 & \boldsymbol{\square} & 0 & b_{1} \\ 0 & 0 & \square & b_{2}\end{array}\right]$ is consistent for every $\overrightarrow{\mathbf{b}}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$ because there is a pivot in each row

Eg:
$\left[\begin{array}{ccc|c}\boldsymbol{\square} & \star & 0 & b_{1} \\ 0 & 0 & 0 & b_{2}\end{array}\right]$ is inconsistent for some $\overrightarrow{\mathbf{b}}$ because there is no pivot in second row

Notice:
The reduced echelon form of $[A \mid \overrightarrow{\mathbf{b}}]$ never contains the row $[0 \ldots 0 \mid \mathbf{\square}]$, regardless of the vector $\overrightarrow{\mathbf{b}}$ \Longleftrightarrow
The reduced echelon form of $[A]$ (the reduced coefficient matrix only) has a pivot in each row.

Putting this together with Theorem 3, we get:

Theorem 4: If A is an $m \times n$ matrix, the following are equivalent:

1. $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has a solution for every $\overrightarrow{\mathbf{b}}$ in \mathbb{R}^{m}
2. each $\overrightarrow{\mathbf{b}}$ in \mathbb{R}^{m} is a linear combination of columns of A
3. the columns of A Span \mathbb{R}^{m}
4. A has a pivot in each row.
